An Introduction to the Math of Design of Experiments and Response Surface Methodology Preview

If you like the preview, please consider buying the book. www.amazon.com/exec/obidos/ASIN/B01DWRYUF8/mathoptionsinc

Thank you,
Bill Kappele

An Introduction to the Math of DOE

By William D. Kappele

An Introduction to the Math of DOE

Copyright © 2002
Math Options Inc.
336 36 ${ }^{\text {th }}$ St. \# 179
Bellingham, WA, 98225
(888) 764-3958
www.ObjectiveDOE.com
All rights reserved.

No part of this book may be reproduced in any form without written permission from Math Options Inc.

How You Will Learn

- Through examples and exercises
- From real data
- No homework

Mathematical Preliminaries

- Objectives-

- You will be able to define the term "matrix."
- You will be able to calculate the following using matrices:
- Transpose
- Scalar-Matrix Product
- Matrix-Matrix Product
- Determinant
- Inverse
- Condition Number
- Trace

Definitions

- A Matrix
is a rectangular array of elements.

1	-1	-1	1
1	-1	1	-1
1	1	-1	-1
1	1	1	1
1	-1	-1	1
1	-1	1	-1
1	1	-1	-1
1	1	1	1

- The Identity Matrix is a matrix with all main diagonal elements equal to one and all offdiagonal elements equal to 0

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

© 2002 by Math Options Inc.

Matrix Transpose

- The transpose of a matrix is a matrix with the rows of the original matrix as its columns.

$X=$| 1 | -1 | -1 | 1 |
| :---: | :---: | :---: | :---: |
| 1 | -1 | 1 | -1 |
| 1 | 1 | -1 | -1 |

$X=$	1	1	1
-1	-1	1	
-1	1	-1	
1	-1	-1	

- If a matrix is denoted by X, its transpose is denoted by X .

Matrix Addition

- Matrices of the same dimensions can be added.
- $\mathrm{C}=\mathrm{A}+\mathrm{B}$ means $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{ij}}$
- Matrices of the same dimension can be subtracted.
- $\mathrm{C}=\mathrm{A}-\mathrm{B}$ means $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}}-\mathrm{b}_{\mathrm{ij}}$

Scalar Multiplication

- Multiplying a matrix by a number is called "scalar multiplication."
- Each element in the matrix is multiplied by the "scalar."

© 2002 by Math Options Inc.

Matrix Multiplication

- To multiply one matrix by another, the first matrix must have the same number of columns as the number of rows in the second matrix.
- The resulting matrix will have as many rows as the first matrix and as many columns as the second matrix.
- $A B=C$ means $c_{i j}=\sum_{k=1}^{n} a_{i k} * b_{k j}$

Matrix Multiplication Example

- Multiply A by B:

$$
\begin{array}{cccc}
& 1 & 2 & \\
& 3 & 4 & \\
& 5 & 6 & \\
& & 2 & 2
\end{array}
$$

Least Squares Regression

- Objectives:

- You will be able to calculate bcoefficients for a model.
- You will understand the principle of Least Squares

The Principle of Least Squares

- The sum of the squares of the deviations from the best fit line is a minimum.

© 2002 by Math Options Inc.

Matrix Form of Least Squares

- First, write the problem down:
$b_{0}+b_{1} X_{1}(1)+b_{2} X_{2}(1)+\ldots+b_{12} X_{1}(1) X_{2}(1)+\ldots=Y(1)$ $\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}(2)+\mathrm{b}_{2} \mathrm{X}_{2}(2)+\ldots+\mathrm{b}_{12} \mathrm{X}_{1}(2) \mathrm{X}_{2}(2)+\ldots=\mathrm{Y}(2)$
$\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{X}_{1}(\mathrm{n})+\mathrm{b}_{2} \mathrm{X}_{2}(\mathrm{n})+\ldots+\mathrm{b}_{12} \mathrm{X}_{1}(\mathrm{n}) \mathrm{X}_{2}(\mathrm{n})+\ldots=\mathrm{Y}(\mathrm{n})$
- Second, express the problem in matrix form:

Minimizing the Error

- To include the response variation in the data, write the matrix form of the problem as:
- $\mathrm{Xb}+\mathrm{e}=\mathrm{Y}$
- e is a vector of errors
- The best estimate of Y possible in ${ }_{\wedge}$ light of the response variation is Y - $\mathrm{Xb}=\mathrm{Y}$
- So,
- $\mathrm{e}=\mathrm{Y}-\mathrm{Xb}=\mathrm{Y}-\hat{\mathrm{Y}}$

What Does the Error Look Like?

- The drawing below illustrates how we can find \hat{Y} to minimize e.

Errors

e is smallest when it is perpendicular to \hat{Y}, or $\hat{Y}^{\prime} \mathrm{e}=0$.
© 2002 by Math Options Inc.

Finding b for $\hat{\mathbf{Y}}$

$$
\begin{gathered}
\hat{\mathrm{Y}}^{\prime} \mathrm{e}=0 \\
(\mathrm{Xb})^{\prime}(\mathrm{Y}-\mathrm{Xb})=0 \\
\mathrm{~b}^{\prime} \mathrm{X}^{\prime}(\mathrm{Y}-\mathrm{Xb})=0 \\
\text { We are looking for a non-zero } \mathrm{b}, \\
\text { so } \\
\mathrm{X}^{\prime}(\mathrm{Y}-\mathrm{Xb})=0 \\
\mathrm{X}^{\prime} \mathrm{Y}-\mathrm{X}^{\prime} \mathrm{Xb}=0 \\
\mathrm{X}^{\prime} \mathrm{Xb}=\mathrm{X}^{\prime} \mathrm{Y}
\end{gathered}
$$

These are called the Normal Equations.
If $X^{\prime} \mathrm{X}$ is not singular, then

$$
\begin{gathered}
\left(X^{\prime} X\right)^{-1}\left(X^{\prime} X\right) b=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \\
b=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
\end{gathered}
$$

© 2002 by Math Options Inc.

Least Squares Example

 Analyze the data for Acmyxil analysis in the following design:| pH | ML Kcl | Abs |
| :---: | :---: | :---: |
| 6.4 | 1.0 | 0.6974 |
| 5.8 | 1.0 | 0.7097 |
| 6.4 | 0.5 | 0.6848 |
| 5.8 | 1.0 | 0.7225 |
| 5.2 | 0.5 | 0.5752 |
| 5.8 | 1.0 | 0.7463 |
| 5.8 | 1.5 | 0.6540 |
| 5.2 | 1.0 | 0.6146 |
| 5.8 | 1.0 | 0.6937 |
| 6.4 | 1.5 | 0.6116 |
| 5.8 | 0.5 | 0.6725 |
| 5.2 | 1.5 | 0.5180 |

© 2002 by Math Options Inc.

End of Preview

If you liked the preview, why not buy the book?

Buy Your Own Copy

www.amazon.com/exec/obidos/ASIN/B01DWRYUF8/mathoptionsinc

Thank You for Reading

I appreciate the time you have taken to read this preview. I hope you will buy the book and it will be a valuable resource for you for years to come.

Bill Kappele.

